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pricing and coverage decisions in an insurance market featuring adverse selection. In particular, we 
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their privately known risk types, and a large number of two types of insurers: conventional insurers 

and “tech” insurers who employ digital technologies. We consider three distinct dynamic equilibrium 

concepts: a finite horizon structure with foresight, an infinite horizon “overlapping generations” 
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1 Introduction 

Digital technology generates data, enabling insurance firms to more effectively and efficiently 

understand the risk they underwrite. A telematics device installed in a car, for example, provides an 

insurer with much more risk-relevant information than the conventional underwriting information. 

Moreover, it opens up opportunities for real-time monitoring and risk assessment. These digital 

technologies can therefore—at least in some contexts—be expected to mitigate information 

asymmetries, both of the adverse selection and moral hazard varieties. Qualitatively speaking, digital 

technologies such as telematics devices will operate in much the same way as “old fashioned” insurer 

learning based on claims experience and policyholder disclosure (Nilssen, 2000; de Garidel-Thoron, 

2005; Cohen, 2012; Kofman and Nini, 2013)—learning processes which have been shown to be 

effective tools to mitigate adverse selection (Eling, Jia, and Yao, 2017) and moral hazard (Dionne, 

Michaud, and Dahchour, 2013). Quantitatively speaking, however, there are two important differences: 

speed and cost. As shown empirically in Eling, Jia, and Yao (2017), learning by conventional 

technologies is slow—and learning via digital technologies is fast or even instantaneous (Gemmo, 

Browne, and Gründl, 2017). Since telematics and other digital technologies involve installation and 

potentially data processing costs, they are—at least for the moment—more costly than conventional 

learning techniques.2 

This paper studies the implications of this speed versus cost tradeoff for equilibrium pricing and 

coverage decisions in an insurance market featuring adverse selection. In particular, we develop a 

theoretical model of dynamic competitive equilibrium featuring a continuum of individuals who differ 

in their risk types and featuring a large number of two types of insurers: those using conventional 

underwriting techniques only (or “conv” insurers) and those “tech” insurers who employ digital 

learning technologies. Tech insurers have an advantage because they can rapidly learn the risk type of 

any given individual and thus can effectively price based on each risk; but installing (and/or 

maintaining) their technology is costly. Conventional insurers cannot immediately observe risk types, 

and hence cannot employ risk-based pricing and face adverse selection, but we do allow them to learn 

over time about the risk type of their customers. 

Within this broad modeling framework, we consider three distinct dynamic equilibrium concepts. One 

is a “myopic” (behavioral) model where customers choose firms based on current prices. In this setting, 

conventional insurers understand their risk pool based on backward-looking experience and update 

prices with a lag as they “bleed” customers to tech insurers. This is best seen as a heuristic, but 

realistic model to describe the learning process of conventional insurers and the market evolution in 

response to the introduction of new technologies. The other two models consider firms and individuals 

2  The costs for implementing and maintaining new technology can be substantial. For example, costs for 
implementing a telematics device in a car are around 100 USD in 2018. The subsequent costs to maintain the 
technology can also be substantial and might be both of variable and fixed nature, depending on how the 
technology is operated (i.e. self-operated versus outsourced to a technology partner). Our analyses will also 
yield equilibrium implications, if the technology costs will go substantially down in the future. 
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to be fully rational and forward-looking. One is a finite horizon (FH) two-period model where 

conventional firms compete with each other for new customers only in the first period. The other is a 

stationary, infinite horizon, overlapping generations (OLG) model where conventional firms compete 

in each period for new customers. The key assumption in this model is that insurers cannot distinguish 

customers from the new generation from older customers who are fleeing other insurers who have 

learned that they are a high-risk type and raised the premiums accordingly.3  

We show that, in all three settings, equilibria will feature a sorting of low-risk types into tech firms 

and high-risk types into conventional firms. We then consider comparative statics of equilibrium with 

respect to two key underlying parameters: the cost of digital technology and the speed at which 

conventional insurers learn the risk types of their buyers. Across all three settings, we establish the 

intuitive result that lowering the cost of the digital technology will raise the equilibrium market share 

of tech firms. Interestingly, however, the effect of the speed of learning on the tech market share 

depends on the dynamic model. In the FH model, faster learning leads to a higher market share for 

conventional firms. Intuitively, this is because incumbent firms can earn information rents once they 

learn about their clients, so the faster they learn the more they will “lowball” prices for new customers 

(Kunreuther and Pauly, 1985; Nilssen, 2000). In the OLG model, the same lowballing incentive is 

present, but it is counteracted by the fact that individuals who reveal themselves to be high risk will be 

dumped (via high prices) by their insurers. They will then return to the conventional market, 

“polluting” the risk pool for conventional insurers writing new business and hence raising the 

equilibrium price of conventional insurance. This “polluting” effect always dominates, so in the OLG 

model, faster learning by conventional firms actually raises the equilibrium share of tech insurers. In 

the myopic model, we show that the effect of faster learning of conventional insurers on the market 

share of tech insurers is ambiguous. 

Our paper fits in a thick literature on asymmetric learning and dynamic pricing. For example, our 

model of conventional firm learning and consequent “lowballing” is consistent with the asymmetric 

learning model used in Kunreuther and Pauly (1985), Nilssen (2000) and de Garidel-Thoron (2005) in 

which the incumbent insurer knows the risk type of the policyholder, but competing insurers do not 

(and in contrast to the symmetric learning model used e.g. in Watt and Vazquez (1997) and Hendel 

(2016)) wherein all insurers have the same information in all periods). The key difference in our paper 

is the simultaneous presence of tech insurers who effectively know the risk type in real time and have 

no incumbency advantage. 

Our work also contributes to the ongoing discussion on the impact of digitalization on the equilibrium 

of insurance market (Filipova-Neumann and Welzel, 2010; Gemmo et al., 2017). Gemmo et al. (2017) 

use a one-period menu contract framework to analyze the trade-off between the reduction of 

information asymmetry and the willingness to share private information (transparency aversion). 

3  Both cases can be motivated empirically, given that in many countries for certain types of insurance products 
information exchange platforms exists, while for other products such platforms do not exists. 
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While Gemmo et al. (2017) assume perfect observation of risk type at contract inception, Filipova-

Neumann and Welzel (2010) analyze a similar setting where risk type is revealed only after an 

accident. Both studies find welfare increases greater or equal to zero in a separating equilibrium 

setting. We assume risks do not have the problem of transparency aversion and instead focus on the 

trade-off between the speed of learning and the digital technology cost. To the best of our knowledge, 

we are the first to analyze the impact of learning speed on the market structure at the competitive 

dynamic equilibrium.4 

The rest of the paper is structured as follows. In Section 2, we introduce our theoretical framework by 

summarizing the common features and qualitative differences of the three models. In Section 3, we 

describe the three models, their (quasi-)equilibriums, and the corresponding propositions at the (quasi-) 

equilibriums. We conclude in Section 4. 

2 Theoretical Framework 

2.1 Common features of all three models 

We consider three distinct models of competitive market structure. In each model, there are a large 

numbers of conventional and tech insurers that compete on price to sell an insurance product with 

homogeneous coverage to a large number of buyers who are differentiated by their loss probability. 

All models feature a set of periods 𝑡 = 0,1,2 … ,𝑇, where 𝑇 ≥ 1 and 𝑇 ≤ ∞. They all feature a set of 

risk types, indexed by the per-period risk of loss 𝑝. Losses are assumed to be independent across 

periods, and of constant size 𝐿 out of a per-period income 𝑊. We abstract from saving, so that, absent 

insurance, individuals have a net consumption of 𝑦𝑡𝐿 = 𝑊 − 𝐿 or 𝑦𝑡𝑁 = 𝑊 in the event of a loss or no 

loss, respectively. 

Firms sell full insurance as one period contracts at a premium 𝑞, which, depending on that firm’s 

ability to observe information, may depend on risk types of the buyer. Tech firms observe risk types 

and hence offer premiums 𝑞𝜏(𝑝)  depending directly on the risk type. Conventional firms can 

distinguish between their incumbent insureds and other potential insureds, and hence can offer them 

different premiums; conventional firms may learn information about their incumbent insureds over 

time, in which case they can potentially offer different incumbent insureds different premiums. 

An individual who buys an insurance contract at a price 𝑞  in period 𝑡 will have loss-independent 

consumption 𝑦𝑡𝐿 = 𝑦𝑡𝑁 = 𝑊 − 𝑞. A conventional firm who sells such a contract to a risk type 𝑝 will 

earn period profits 𝜋𝑐 = 𝑞 − 𝑝𝐿. A tech firm who sells such a contract earns 𝜋𝜏 = 𝑞 − 𝑝𝐿 − 𝐶, where 

4  Our paper is also related to the debate on the usage of genetic information for risk calculation. A genetic test is 
also costly, but if shared with the insurance company decreases information asymmetry. Hoy and Ruse (2005) 
argue that the reduction of adverse selection and therefore the increasing efficiency is accompanied by the 
effect that people who are in poor health are punished twice (higher premium and health problems); some 
people will refuse to take a genetic test, because they are afraid that it will increase their insurance premium. 
Doherty and Posey (1998) find that for uninformed individuals a genetic test has a positive private value if 
prevention is sufficiently effective in lowering the premium, even though the information must be shared with 
the insurer. 
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𝐶 ≥ 0 are monitoring costs, which we potentially allow to be history-dependent in order to allow for 

one-time installation costs as well as ongoing maintenance and monitoring costs. 

Individuals are assumed to have standard risk averse von Neumann-Morgenstern preferences over 

consumptions within periods; we assume the utility of individuals is additively separable and time-

discounted across periods, i.e., given by: 

�𝛽𝑡[𝑝𝑈(𝑦𝑡𝐿) + (1 − 𝑝)𝑈(𝑦𝑡𝑁) ].
𝑡

  

We assume that 𝑈  is twice differentiable, increasing, and strictly concave, and 𝛽 ≤ 1  is the time 

discount factor of individuals. Firms are risk neutral and they all discount their per-period profits over 

time with the same market discount rate 𝛽. 

Finally, we assume that there is a large number of firms, so that competition drives expected profits 

down to zero on a contract-by-contract basis. As we describe below, the precise meaning of this will 

vary depending on whether firm beliefs are myopic or forward looking. In all cases, however, 

competition will drive tech firms to price at 𝑞 = 𝑝𝐿 + 𝐶, so that they break even given the realized 

(and known) risk 𝑝, and this tech market will provide a static “outside option” to insurance buyers who 

are considering buying from a conventional firm. We assume, purely for expositional simplicity, that 

𝑝𝑈(𝑊 − 𝐿) + (1 − 𝑝)𝑈(𝑊) < 𝑈(𝑊 − 𝑝𝐿 − 𝐶) 

for all 𝑝 ∈ �𝑝, �̅��. This ensures that all individuals prefer insuring with a (break-even pricing) tech firm 

to going without insurance (which is always true for sufficiently low 𝐶). We will therefore not discuss 

the case of opting out of the insurance market in the following. 

2.2 Qualitative differences across models 

We consider three families of models differ in their assumptions about dynamics and rationality. We 

describe these differences qualitatively here and then formalize them in the subsequent section. 

The first “finite horizon” (FH) model is a two-period rational expectations model in the spirit of 

Nilssen (2000) and de Garidel-Thoron (2005). In this model, conventional firms compete in period 0, 

taking into account two things that firms in the myopic model ignore. First, they take into account the 

endogenous distribution of risk types who actually buy from them. In other words, they correctly 

anticipate that some buyers (in practice, the low risks) will buy from tech firms (to opt out of the 

market is excluded by definition) in the current period, and adjust their prices accordingly. Second, 

they take into account the future consequences of their current actions. Specifically, conventional 

insurers may asymmetrically learn between periods 0 and 1 about the risk type of the individual they 

insured. If so, they will earn some information quasi-rents in period 1—though these rents are limited 

by the competitive tech market that coexists with it. A central dynamic in this model is “lowballing” of 

conventional prices in period 1, in anticipation of these period 2 quasi-rents. 
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The second “overlapping generations” (OLG) model is an infinite horizon rational expectations model. 

As in the FH model, firms (and buyers) are forward-looking and correctly anticipate the equilibrium 

distribution of risk types who actually buy from them at each moment in time. As such, the same 

“lowballing” dynamic applies, wherein conventional firms make losses on initials sales in anticipation 

of the information quasi-rents they will earn when they learn the risk types of their incumbent insureds. 

A key difference from the FH model is that these quasi-rents are (also) limited by the ability of 

individuals to return to the conventional insurance market, where they will be indistinguishable from 

new entrants into the market. Indeed, a central dynamic in this model is that high risk types “cycle 

through” different conventional firms, sticking with their new firm until that firm learns their type and 

then returning to the broad pool for a new, uninformed conventional insurer. 

The third “myopic” model makes stylized—but plausible—behavioral assumptions about pricing and 

purchasing behavior, in the spirit of Kunreuther and Pauly (1985). Individuals in this model are 

assumed to choose by (myopically) maximizing their current-period payoff—i.e., they choose the 

cheapest contract available to them today. Similarly, competition is assumed to drive current period 

profits down to zero, however, some conventional insurers may suffer from negative profits since they 

do not know the risk type of new customers and thus underprice them, given that the beliefs of firms 

are also myopic. Furthermore, the beliefs of conventional firms are assumed to be formed in a 

backward-looking way, based initially on the population distribution of risk types, and then, later, 

from the risk distribution realized at conventional firms in the preceding period. We consider a family 

of these myopic models, where conventional firms learn over time about the risk types of their 

incumbent insureds. A central dynamic in these models is an unraveling over time a la Akerlof (1970), 

as conventional firms realize worse and worse risks over time, raising prices and driving more 

individuals towards tech firms. 

3. Models 

3.1 Finite Horizon Rational Expectations Model 

In this model, there are two periods: 𝑡 = 0,1. A continuum of types with (cumulative) distribution 

𝐹(𝑝) and continuous pdf 𝑓(𝑝) with support on �𝑝, �̅�� ⊂ (0,1) contemplate buying insurance in each 

period. We make the technical assumption that 1−𝐹(𝑝)
𝑓(𝑝)  is decreasing in 𝑝  (the standard monotone 

hazard rate property which is obviously true, e.g., for a uniform distribution). 

The cost 𝐶 for tech firms to provide insurance is (potentially) time dependent, with cost 𝐶0 for a first-

time tech buyer, and 𝐶1 ≤ 𝐶0 for an individual who was insured with a tech firm in period 0 and buys 

insurance from a tech firm again in period 1. We assume that any tech firm will have a cost of 𝐶1 in 

period 1 for such a buyer; one interpretation is that there is a fixed cost of putting in equipment and 

then a variable cost of using it in each period—but all firms can use the same equipment once it is 

6 



installed and only bear the monitoring cost.5 This assumption ensures that tech firms are effectively 

competing statically in each of the two periods over the premium 𝑞𝑡𝜏(𝑝) for each potential buyer, so 

that, in equilibrium, 𝑞0𝜏(𝑝) = 𝑞1
𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0 and 𝑞1

𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶1, where 𝑞1
𝜏,𝑛(𝑝) denotes prices 

offered in period 1 to individuals who were not insured with tech firms in period 0 and 𝑞1
𝜏,𝑖(𝑝) denotes 

prices for those who were.  

Conventional firms cannot observe buyer type when setting prices in period 0 and thus compete over a 

single premium 𝑞0𝑐. If they insure an individual in period 0, then, with probability 𝛼, they will learn the 

buyer’s type before setting prices again in period 1, and will choose a price 𝑞1
𝑐,𝐿 (𝑝). With probability 

1 − 𝛼, they do not observe the type, and can offer a single premium 𝑞1
𝑐,𝑈 to these unlearned types. We 

also assume, again purely for analytical simplicity, that in period 1 conventional firms cannot (or do 

not) offer contracts to non-incumbent insureds—so individuals who do not wish to stay with their 

original conventional insurer can either forgo insurance or switch to tech firms.6 

With the goal of defining a competitive, rational expectations equilibrium for this economy, consider 

first the sequentially rational decisions of individuals and firms in period 1. Individuals who bought 

from a tech firm in period 0 choose rationally in period 1 between forgoing insurance and buying from 

a tech firm at their competitive price 𝑞1
𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶1. Because of our assumption on [𝑝,𝑝] and 𝐶1, 

they will all choose to purchase insurance. 

Similarly, individuals who purchased from conventional firm in period 0 in principle face a choice 

among three options: foregoing insurance, switching to buy from a tech firm at the premium 𝑞1
𝜏,𝑛(𝑝) =

𝑝𝐿 + 𝐶0, or remaining with their conventional firm at the offered price of 𝑞1
𝑐,𝐿(𝑝) or 𝑞1

𝑐,𝑈, depending 

on whether their type was learned or not. However, as we will show below they will never choose to 

forego insurance in equilibrium, and they effectively choose between switching to a tech firm and 

remaining with their incumbent firm. We assume that they remain with their conventional firm if they 

are indifferent. In other words, they choose to remain precisely when 𝑞1
𝑐,𝐿(𝑝) ≤ 𝑞1

𝜏,𝑛(𝑝) if their type 

was learned and when 𝑞1
𝑐,𝑈 ≤ 𝑞1

𝜏,𝑛(𝑝) if it was not. 

In light of the optimizing behavior by individuals, an incumbent firm in period 1 who has learned the 

type 𝑝 of a given insured maximizes profits by choosing 𝑞1
𝑐,𝐿(𝑝) = 𝑝𝐿 + 𝐶0, i.e., the highest price at 

which they will retain their customer—which is a profitable price for the incumbent firm since 𝐶0 > 0. 

The profit-maximizing price for their unlearned customers, namely 𝑞1
𝑐,𝑈, is less obvious. At any price 

5 Allowing an incumbency advantage for tech firms, so that new firms have to pay 𝐶0 > 𝐶1 for one period does 
not change any of the qualitative results, though it is mildly more expositionally cumbersome.  

6  This assumption is intuitively plausible, as incumbent conventional firms have an informational advantage 
over other conventional firms for these individuals: even though they do observe their type, they know that 
they have not been revealed to be a high risk types. Non-incumbent firms would attract risks of both the 
unrevealed types and the high-risk revealed types who the incumbent firms would be happy to offload. For this 
reason, it is not hard to show that non-incumbent conventional firms will never make positive sales in 
equilibrium in which such sales are allowed. But the presence of these potential competitive firms makes the 
analysis of the equilibrium less transparent. Hence our technical assumption. 
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𝑞1
𝑐,𝑈, they will sell to those types for whom 𝑞1

𝑐,𝑈 ≤ 𝑞1
𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0, i.e., to any customers with 

𝑝 ∈ �(𝑞1
𝑐,𝑈−𝐶0)
𝐿

,  𝑝� . Any incumbent unlearned types with 𝑝 <  (𝑞1
𝑐,𝑈−𝐶0)
𝐿

 will depart for tech firms. 

Lowering the premium thus involves a tradeoff: on the one hand, the firm retains additional, profitable 

lower risks. But, on the other hand they lower their per-unit profits on the higher-risk customers who 

were already planning to purchase at the higher premium. The assumption that 1−𝐹(𝑝)
𝑓(𝑝)  is decreasing in 

𝑝 will ensure that there is a unique profit maximizing price 𝑞1
𝑐,𝑈∗(�̂�) whenever the set of period-0 

conventional firm purchasers has the interval form [�̂�, �̅�] (as it will in equilibrium), and that there will 

also be a cutoff individual 𝑝∗(�̂�) ∈ [�̂�, �̅�)  for whom 𝑞1
𝑐,𝑈∗(�̂�) ≡ 𝑝∗(�̂�)𝐿 + 𝐶0  who is indifferent 

between staying with the conventional insurer and switching to a tech firm. 

In period 0, we aim to describe a competitive equilibrium with perfect foresight. Intuitively, 

individuals will choose between tech and conventional firms in period 0, fully anticipating what 

pricing will be in period 1 (and hence consistent with the preceding). Conventional firms will compete 

over premiums and drive that premium to the level at which such firms earn zero lifetime profits. 

Since conventional firms earn positive profits in period 1, this will imply “lowballing”. 

To formalize this basic intuition, note first that individuals who choose a tech firm pay 𝑞0𝜏(𝑝) = 𝑝𝐿 +

𝐶0 in period 0 and rationally anticipate paying a premium 𝑞1
𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶1 in period 1. Individuals 

who choose a conventional firm pay some premium 𝑞0𝐶  and then rationally anticipate their 

conventional firm’s period 1 pricing. They thus anticipate paying 𝑞1
𝑐,𝐿(𝑝) = 𝑝𝐿 + 𝐶0  when, with 

probability 𝛼, their type is learned. With probability 1 − 𝛼, their type is not learned. If 𝑝 < (𝑞1
𝑐,𝑈∗−𝐶0)
𝐿

, 

they will switch to a tech firm in period 1 and again pay 𝑞1
𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0. Higher 𝑝 types will 

instead anticipate staying with their conventional firm and paying some rationally anticipated 𝑞1
𝑐,𝑈∗. 

It is intuitive that in period 0 purchase decisions will take a cutoff form: higher 𝑝 individuals will buy 

from conventional firms and lower 𝑝 individuals from tech firms.7 The cutoff individual �̂� who buys 

from a conventional firm will always buy insurance at a price  �̂�𝐿 + 𝐶0 in period 1. This follows from 

period 1 profit maximization, if their type is learned. If it is not learned, it follows from the fact that 

𝑞1
𝑐,𝑈 ≥ �̂�𝐿 + 𝐶0 as, at 𝑞1

𝑐,𝑈 = �̂�𝐿 + 𝐶0, the firm will retain all of their incumbent customers, and there 

is no “additional sales” benefit to lower prices. If interior, the cutoff type �̂� is thus indifferent between 

buying from a conventional firm and paying 𝑞0𝑐  then  �̂�𝐿 + 𝐶0  or buying from a tech firm and 

paying  �̂�𝐿 + 𝐶0 and then  �̂�𝐿 + 𝐶1. This implies a cutoff type �̂�(𝑞0𝑐;𝐶0,𝐶1) which is the maximum of 

𝑝  (if all buy from conventional firms) and the solution to:  

7  It follows formally from two simple observations given any fixed prices. First, the (non-stochastic) utility 
difference between buying from a tech firm in both periods and buying from a conventional firm in period 1 
and then a tech firm in period 2 is 𝑈(𝑊 − 𝑝𝐿 − 𝐶1) − 𝑈(𝑊 − 𝑞0𝐶), which is decreasing in 𝑝. Second, the 
period 1 option value of staying at a conventional firm is increasing in 𝑝. 
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𝑢(𝑊 − 𝑞0𝑐) + 𝛽𝑢(𝑊 − �̂�(𝑞0𝑐)𝐿 − 𝐶0) = 𝑢(𝑊 − �̂�(𝑞0𝑐)𝐿 − 𝐶0) + 𝛽𝑢(𝑊 − �̂�(𝑞0𝑐)𝐿 − 𝐶1).    (𝑬𝒒𝒏.𝒑�) 

Notice that this solution is decreasing in both 𝐶0 and 𝐶1. 

If the market price is 𝑞0𝑐, then the lifetime profits of all conventional firms will be: 

𝜋𝑐(𝑞0𝑐) = � (𝑞0𝑐 − 𝐿𝑝)𝑓(𝑝)𝑑𝑝
𝑝

𝑝��𝑞0
𝑐�

+ 𝛽𝛼𝐶0 �1 − 𝐹��̂�(𝑞0𝑐)��+ 𝛽(1 − 𝛼)� (𝑞1𝑐𝑈∗��̂�(𝑞0𝑐)� − 𝐿𝑝)𝑓(𝑝)𝑑𝑝.
𝑝

𝑝∗�𝑝��𝑞0
𝑐��

  

The first term is the period-0 profits. The second term is the profits in period 1 for individuals whose 

types have been learned (i.e., 𝐶0, since the profit-maximizing price is 𝑞𝑐,𝐿(𝑝) = 𝑝𝐿 + 𝐶0 = 𝑞𝜏𝑛(𝑝)). 

The final term is the profit from unlearned types. The equilibrium price 𝑞0𝑐 is determined by a zero 

lifetime profit condition, 𝜋𝑐(𝑞0𝑐) = 0. We say that a zero-profit equilibrium is locally stable if 𝜋𝑐(𝑞0𝑐) 

is increasing in 𝑞0𝑐 (otherwise, a small decrease in premium by a single firm will be profitable). 

We gather the preceding reasoning into the following definition of an FH-equilibrium. 

Definition: Equilibrium in the FH Market 

An equilibrium is a set of prices 𝑞0𝑐 ,𝑞1
𝑐,𝑈,𝑞1

𝑐,𝐿(𝑝),𝑞0𝜏(𝑝), 𝑞1
𝜏,𝑛(𝑝), 𝑞1

𝜏,𝑖(𝑝), and a pair of cutoff types 𝑝0 

and 𝑝1 ≥ 𝑝0 such that: 

(i) Tech firm competition: 𝑞0𝜏(𝑝) = 𝑞1
𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0. 𝑞1

𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶1.  

(ii) Conventional firm period 1 profit maximization for learned types: 𝑞1
𝑐,𝐿(𝑝) = 𝑝𝐿 + 𝐶0. 

(iii) Conventional firm period 1 profit maximization for unlearned types: 

𝑞1
𝑐,𝑈 = arg max

q
� (𝑞 − 𝑝𝐿)𝑓(𝑝)𝑑𝑝
�̅�

𝑝�(𝑞)
,   where   𝑝�(𝑞) = max �𝑝0,

𝑞 − 𝐶0
𝐿 � . 

(iv) Period-0 conventional firm competition and stability: 𝜋𝑐(𝑞0𝑐) = 0 and 𝑑𝜋
𝑐(𝑞0𝑐)
𝑑𝑞0

𝑐 > 0. 

(v) Individual optimization: 𝑝1 =
�𝑞1

𝑐,𝑈−𝐶0�

𝐿
  and 𝑝0 = max �𝑝, �̂�(𝑞0𝑐)� , where  �̂�(𝑞0𝑐)  is the 

solution to equation (𝑬𝒒𝒏.𝒑�) above. Individuals with 𝑝 < 𝑝𝑡  (𝑡 = 0,1) purchase from 

tech firms while those with 𝑝 > 𝑝𝑡 purchase from conventional firms. 

Equilibrium depends on the exogenous cost parameters 𝐶0,𝐶1  and the speed of learning 𝛼 . The 

following proposition is our main result for the FH model. It establishes formally that the equilibrium 

cutoffs are decreasing in 𝛼, 𝐶0, and 𝐶1. In other words, when the speed of learning or the cost of 

digital technology increase, the market shares of conventional firms in both periods increase. The 

formal proof is in the appendix. 

Proposition FH: In any locally smooth family of equilibria: 

(1) The equilibrium cutoff 𝑝0(𝛼,𝐶0,𝐶1) is (weakly) decreasing in  𝛼,  𝐶0  and 𝐶1 , strictly so if 

𝑝0 ≠ 𝑝. 
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(2) The equilibrium cutoff 𝑝1(𝛼,𝐶0,𝐶1)  is (weakly) decreasing in 𝛼 , 𝐶0  and 𝐶1 . It is strictly 

decreasing in 𝐶0 if 𝑝0 ≠ 𝑝1. 

3.2 Infinite Horizon OLG Model 

In this model, there is an infinite number of periods. There is a constant mass of potential insurance 

buyers in each period, which we normalize to 1. These potential buyers (individuals) make insurance 

decisions over one-period contracts at the beginning of the period, then losses are realized and payouts 

are made for covered losses. Before the next period starts, each individual has an independent 

probability (1 − 𝜂) ∈ [0,1)  of “exiting” the market (e.g., dying), and a mass (1 − 𝜂)  of new 

individuals enter the market (are “born”). 

Otherwise, the structure is broadly similar to the FH market. We assume that new types have the 

distribution 𝐹(𝑝)  (with continuous pdf 𝑓(𝑝) with support on �𝑝, �̅�� ⊂ (0,1)) . The distribution of 

types in the market is thus constant and described by 𝐹(𝑝), as in the FH market, but here there is a 

constant inflow and outflow of new and old agents. 

We again assume that the cost 𝐶  for tech firms to provide insurance is again (potentially) time 

dependent, with cost 𝐶0 for a first-time tech buyer, and 𝐶1 ≤ 𝐶0 for an individual who was previously 

insured with any tech insurer. We allow any discount factor 𝛽 ∈ (0,1). 

As in the FH model, we assume that if a conventional firm does not know the type of an individual to 

whom it sells a contract, it will learn that type with a time-independent probability 𝛼.8 

The key difference in modeling assumptions are closely related to the finite vs infinite time horizon. 

With a finite horizon, a conventional firms knows in period 1 whether they insured a given individual 

in the preceding period, and thus would know that any new potential customer must have previously 

insured with another provider—and thus is likely to be high risk. It is thus natural to assume that 

individuals in period 1 will find it impossible to purchase insurance at competing, less informed, 

conventional firms in period 1. In contrast, conventional firms in the infinite horizon model know that 

there are newly born potential customers in each period, so they have an incentive to make new sales. 

We assume—critically—that these firms are unable to distinguish these new customers from 

customers who were previously insured at another firm in the infinite horizon model. 

The tech firms still compete statically each period, setting 𝑞𝑡
𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0 for customers who have 

new tech customers and 𝑞𝑡
𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶1 for old ones, and we drop the 𝑡 subscript henceforth since 

the environment is, by construction, static over time. The ability for individuals to “return to the 

market” and find a new conventional firm significantly changes—and in some ways simplifies—

conventional firm pricing. First, conventional firms who have incumbent types whose type they have 

8 Allowing 𝛼 to be increasing over time for a conventional firm that repeatedly insures the same individual and 
has not yet learned their type does not change any of the subsequent analysis or qualitative results. It is 
significantly more notationally cumbersome, however.  
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learned set some price 𝑞𝑐,𝐿(𝑝) so as to maximize profits, but the outside option for these types is no 

longer the same: they can go to a tech firm, as in the FH model, but now they additionally have the 

option of leaving for a new conventional firm. Second, conventional firms who do not learn the type 

of their incumbent buyer have no incentive to retain those buyers. Intuitively: they have learned 

nothing about them (other than the fact that they are high enough risk to prefer conventional to tech 

insurers), and because these buyers can always go to a new firm, they cannot charge a higher price or 

extract any rents. In effect, we can treat unlearned types as “returning” to the conventional pool and 

buying from a random new firm. Together, this means that the only conventional firm premiums 

needed to describe equilibrium in the OLG model are 𝑞𝑐,𝐿(𝑝) and 𝑞𝑐, with the latter denoting the price 

in the competitive market for “new” insureds. We will be looking for a steady-state equilibrium in 

which these premiums are stable over time. 

Towards describing that steady-state equilibrium, note that an individual can be in one of only four 

mutually exclusive and exhaustive states: they can be with an incumbent conventional firm who 

knows their type (L), or not (U), and they can have purchased from a tech firm in the past (𝑖), or not 

(𝑛). We describe the four states by 𝐿𝑖, 𝐿𝑛, 𝑈𝑖, and 𝑈𝑛. 

Consider first an individual in state 𝑈𝑖. She has the option of choosing a tech firm at price 𝑞𝜏,𝑖(𝑝) or 

from a conventional firm at price 𝑞𝑐. Contrast this with an individual in state 𝑈𝑛. She has the option of 

choosing a tech firm at price 𝑞𝜏,𝑛(𝑝) or from a conventional firm at price 𝑞𝑐 . Because 𝑞𝜏,𝑛(𝑝) ≥

𝑞𝜏,𝑖(𝑝) (with strict inequality if 𝐶1 < 𝐶0), it is obvious that if the 𝑈𝑛 individual finds it optimal to 

choose the tech firm, so will the 𝑈𝑖 individual. But this means that an individual who purchases from a 

tech firm in the period in which she is born (into the 𝑈𝑛 state) will always purchase from a tech firm—

that is, there will never be a type in the 𝐿𝑖 state. Conversely, an individual who purchases from a 

conventional firm when they are born will never purchase from a tech firm: she has revealed that she 

prefers 𝑞𝑐 at a conventional firm over buying from a tech firm, and she will always have the option of 

doing so. Together, this means that individuals sort permanently into tech and conventional firms in 

the year they are born. 

Since tech firms can observe risk type better than conventional firms, standard adverse selection 

intuition suggests that this initial sorting will take a “cutoff” form. To show this formally, consider 

again the pricing problem for a conventional firm who has learned a buyer’s type and thus can earn 

some information quasi-rents from her. Because that buyer “sorted” into conventional firms, we know 

that the relevant “outside option” for this buyer is a return to the conventional market where she will 

pay 𝑞𝑐. The conventional firm can and therefore will charge up to 𝑞𝑐 to incumbent buyers they wish to 

retain. (They will charge more to those buyers with 𝑞𝑐 < 𝑝𝐿 , because there is no price they can 

profitably charge while retaining them, but without loss of generality we can imagine them charging a 

price of 𝑞𝑐 to all and only retaining types with 𝑞𝑐 ≥ 𝑝𝐿.) This means that conventional buyers face a 

time independent insurance premium, independent of their type—and this is true regardless of whether 
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their type is learned or not. In light of this the payoff to “sorting” into conventional firms when born is 

independent of type, while the payoff to “sorting” into tech firms is decreasing in 𝑝. There is therefore 

some cutoff type �̂� who is indifferent between the tech and conventional firms, with lower types 

sorting into tech and higher types sorting into conventional firms. In fact, we can easily characterize 

the cutoff �̂�(𝑞𝑐) as a function of the price 𝑞𝑐 via the indifference condition: 

1
1 − 𝛽𝜂

𝑈(𝑊 − 𝑞𝑐) = 𝑈 �𝑊 − 𝑞𝜏,𝑛��̂�(𝑞𝑐)�� +
𝛽𝜂

1 − 𝛽𝜂
 𝑈 �𝑊 − 𝑞𝜏,𝑖��̂�(𝑞𝑐)��. 

The final thing needed to characterize equilibrium is the price 𝑞𝑐 offered to conventional buyers in the 

“non-incumbent” pool. Towards describing the distribution of types in this pool, let 𝑝�(𝑞𝑐) = 𝑞𝑐

𝐿
, which 

is the maximum risk type that incumbent firms will retain after learning their types. The pool of non-

incumbent buyers consists of all living individuals with 𝑝 > 𝑝�(𝑞𝑐) (a mass �1 − 𝐹�𝑝�(𝑞𝑐)�� of them) 

and a fraction 1−𝜂
1−𝜂(1−𝛼)

 of individuals with 𝑝 ∈ [�̂�(𝑞𝑐),𝑝�(𝑞𝑐)],9 (a mass �𝐹�𝑝�(𝑞𝑐)� − 𝐹��̂�(𝑞𝑐)��. A 

randomly selected individual in the pool will thus be drawn from 𝑝 ∈ [�̂�(𝑞𝑐),𝑝�(𝑞𝑐)] with probability 

𝑄𝑀(𝑞𝑐) ≡

1 − 𝜂
1 − 𝜂(1 − 𝛼) �𝐹�𝑝�(𝑞

𝑐)� − 𝐹��̂�(𝑞𝑐)��

1 − 𝜂
1 − 𝜂(1 − 𝛼) �𝐹�𝑝�(𝑞

𝑐)� − 𝐹��̂�(𝑞𝑐)�� + 1 − 𝐹�𝑝�(𝑞𝑐)�
. 

Lifetime expected profits from such a sale are thus: 

𝜋𝑐(𝑞𝑐) = �𝑄𝑀(𝑞𝑐)𝔼�𝑞𝑐 − 𝐿𝑝|𝑝 ∈ [�̂�(𝑞𝑐),𝑝�(𝑞𝑐)]� + �1 − 𝑄𝑀(𝑞𝑐)�𝔼�𝑞𝑐 − 𝐿𝑝|𝑝 ∈ [𝑝�(𝑞𝑐),𝑝]��

+ 𝛼𝜂𝛽𝑄𝑀(𝑞𝑐)
1

1 − 𝜂𝛽 �
 𝔼�𝑞𝑐 − 𝐿𝑝|𝑝 ∈ [�̂�(𝑞𝑐),𝑝�(𝑞𝑐)]��. 

The first line is just the premium minus the expected losses in the current period. The second term is 

the future profits if the type is learned (probability 𝛼), does not “die” (𝜂) and is worth retaining 

(𝑄𝑀(𝑞𝑐)). In this case, the firm earns positive information rents 𝑞𝑐 − 𝐿 𝔼�𝑝|𝑝 ∈ [�̂�(𝑞𝑐),𝑝�(𝑞𝑐)]� for 

all future periods in which the individual remains alive (the present discounted number of which is 
1

1−𝜂𝛽
). 

Definition: Equilibrium in the OLG Market 

An equilibrium is a set of prices 𝑞𝜏,𝑛(𝑝), 𝑞𝜏,𝑖(𝑝), 𝑞𝑐,𝐿(𝑝), and 𝑞𝑐 and a cutoffs 𝑝�∗ such that:  

(i) Tech firm competition: 𝑞𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0, 𝑞𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶1.  

(ii) Incumbent conventional firm profit maximization: 𝑞𝑐,𝐿(𝑝) = 𝑞𝑐 

(iii) Conventional firm competition: 𝜋𝑐(𝑞𝑐) = 0, and 𝑑𝜋
𝑐(𝑞𝑐)
𝑑𝑞𝑐

> 0.  

9  These individuals remain in the pool as long as they are (a) alive and (b) have not yet had their type learned. 
The number of such individuals is (1 − 𝜂)�𝐹(𝑝�) − 𝐹(�̂�)�(1 + 𝜂(1 − 𝛼) + ⋯+ 𝜂𝑡(1 − 𝛼)𝑡 +…). The total 
number of such individuals in total is �𝐹(𝑝�) − 𝐹(�̂�)�. 
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(iv) Individual optimization 1
1−𝛽𝜂

𝑈(𝑊 − 𝑞𝑐) = 𝑈�𝑊 − 𝑞𝜏,𝑛(�̂�∗)� + 𝛽𝜂
1−𝛽𝜂

 𝑈 �𝑊 − 𝑞𝜏,𝑖(�̂�∗)�. 

Equilibrium will again depend on the exogenous cost parameters 𝐶0,𝐶1 and the speed of learning 𝛼. 

The following proposition is our main result for the OLG model. It establishes formally that the 

equilibrium cutoffs are again decreasing 𝐶0  and 𝐶1 . In contrast to the FH model, however, faster 

learning by conventional firms actually lowers the conventional firm market share (raises the cutoff). 

The formal proof is in the appendix. 

Proposition OLG: In any locally smooth family of equilibria:  

(1) The equilibrium cutoff �̂�∗ is (weakly) decreasing 𝐶0 and 𝐶1, and strictly so if �̂�∗ ≠ 𝑝. 

(2) The equilibrium cutoff is increasing in 𝛼, strictly so if �̂�∗ ∈ (0,1) and 𝛽 < 1. 

3.3 Infinite Horizon Myopic Model 

In this section, we present a model that describes the heuristic (myopic) decision making process that 

might reflect the real insurance market today. We again assume an infinite number of periods and a 

continuum of types with (cumulative) distribution 𝐹(𝑝)  and continuous pdf 𝑓(𝑝) > 0 on �𝑝, �̅�� ⊂

(0,1), buying insurance in each period. The cost 𝐶 for tech firms to provide insurance is (potentially) 

time dependent, with cost 𝐶0  for a first-time tech buyer, and 𝐶1 ≤ 𝐶0  for an individual who was 

previously insured with any tech insurer for 𝑘 periods. (As we shall see, the 𝐶1 will not end up being 

relevant, and neither would any 𝐶𝑘 if the cost was decreasing further for longer incumbency periods.) 

In contrast to the FH and OLG model, customers choose firms based on the current-period prices 

without considering the consequences of current-period choices for prices in future periods. Also, 

conventional insurers use backward-looking expectations about their risk pool and update prices with 

a lag of one period. The tech firms compete in each period, offering 𝑞𝑡
𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0  for new 

customers and 𝑞𝑡
𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶k for old ones.  

In period 0, conventional firms cannot observe buyers’ types when determining prices, and offer 

average premium 𝑞0
𝑐,𝑈 ≡ 𝑝�0∗𝐿 equal to the expected loss of all risks in the market to each customer 

(where 𝑝�0∗ ≡ ∫ 𝑝𝑓(𝑝)𝑑𝑝�̅�
𝑝 ). In the subsequent periods (𝑡 = 1, 2, …), if a conventional firm insured an 

individual in the period 𝑡 − 1, it will learn that policyholder’s risk type with probability 𝛼.  

In subsequent periods, conventional firms offer new customers whose type they don’t know (either 

unlearned incumbents or new customers) 𝑞𝑡
𝑐,𝑈 = 𝐸[𝑝𝐿�𝑐𝑜𝑛𝑣𝑡−1𝑈 ] ≡ 𝑝�𝑡𝐿, the premium that would be 

fair given the losses they experienced within their unknown insured population in the previous 

period—whose mean risk is defined to be 𝑝�𝑡. We assume symmetry across all conventional firms, so 

the firm-specific distribution 𝑐𝑜𝑛𝑣𝑡−1𝑈  coincides with the market-wide distribution of customers who 

buy in the “unknown” market. As such, we can without loss of generality assume that all customers 
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whose type was unlearned in period 𝑡 − 1 and who choose to buy from a conventional firm, re-enter a 

common pool and choose randomly among the conventional insurers. 

We consider two different assumptions about 𝑞𝑡
𝑐,𝐿(𝑝), the premiums that the incumbent insurers offer 

to incumbents whom they have learned type. The first assumption is that competitive firms are savvy 

enough to recognize that knowing an individual’s risk type potentially allows them to extract rents and 

that it knows (by introspection) the price that other conventional firms will offer to new customers. In 

this case, firms will set 𝑞𝑡
𝑐,𝐿(𝑝) = min{𝑝𝐿 + 𝐶0,𝑞𝑡

𝑐,𝑈} for any customer to whom it will be profitable 

to sell at this price (and otherwise will set a very high price to encourage the customer to go 

elsewhere). This pricing formula extracts the maximal rents possible given the effective competition. 

A second, simpler pricing scheme is to have 𝑞𝑡
𝑐,𝐿(𝑝) = 𝑝𝐿 + 𝐶0. This pricing rule is more naïve, in the 

sense that it effectively regards tech firms as the competitive fringe even when the other uninformed 

conventional firms may actually offer a better price. 

3.3.1 Naive Pricing Environment 

We first consider the naive pricing case with  𝑞𝑡
𝑐,𝐿(𝑝) = 𝑝𝐿 + 𝐶0. Individuals who purchased from a 

conventional firm in period 𝑡 − 1 whose type was learned by their incumbent firm choose in period t 

among three options: (1) switching to a tech firm offering a premium of 𝑞𝑡
𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0, (2) stay 

with the incumbent conventional firm offering a premium of 𝑞𝑡
𝑐,𝐿(𝑝) = 𝑝𝐿 + 𝐶0 , and (3) entering the 

“unknown” market paying a premium of 𝑞𝑡
𝑐,𝑈. Individuals who purchased from a conventional firm in 

period 𝑡 − 1 and did not have their type learned have only choices (1) and (3). Since customers are 

myopic, they choose the lowest-premium option. It follows that, among individuals who purchased in 

the “unknown” conventional market in period 𝑡 − 1: 

• The fraction (1 − 𝛼) whose insurers did not learn their type will leave for a tech firm if 

𝑞𝑡
𝜏,𝑛(𝑝) < 𝑞𝑡

𝑐,𝑈, i.e., 𝑝 < 𝑝�𝑡 −
𝐶0
𝐿

. Otherwise, they will continue to participate in the “unknown” 

conventional market.10 

• The fraction 𝛼 whose insurers learned their type will leave the “unknown” market and stay 

with their incumbent firm, paying the premium 𝑝𝐿 + 𝐶0, if 𝑝 < 𝑝�𝑡 −
𝐶0
𝐿

, and otherwise will 

continue to participate in the “unknown” conventional market (by randomly choosing a new 

firm that does not know their type).11 

Thus, all types below 𝑝𝑡∗=max �𝑝�𝑡 −
𝐶0
𝐿

,𝑝� exit the unknown conventional market, while all types 

above 𝑝𝑡∗ remain in the unknown conventional market. 

10 We assume that the indifferent types with 𝑝 = 𝑝�𝑡 + 𝐶0
𝐿

 remain in the unknown conventional market. Because 
there is a measure zero of such types, this assumption is unimportant. 

11 Again, the measure zero of indifferent types are (safely) assumed to remain in the unknown conventional 
market. 
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We prove these cutoffs, 𝑝�𝑡 and 𝑝𝑡∗, are non-decreasing in 𝑡 inductively. First, 𝑝�0∗ ≤ 𝑝�1 (with equality if 

and only if 𝑝�0∗ > 𝑝) since the lowest risk types (potentially) leave the unknown conventional market 

for tech firms. If 𝑝�𝑡−1 ≤ 𝑝�𝑡, then no individuals will re-enter the unknown conventional market (but 

will instead stay either in the tech market or with their incumbent conventional firm who knows their 

type). Per the preceding bullets, all exit from the unknown conventional market will occur from 

individuals with 𝑝 < 𝑝�𝑡—i.e., from individuals with below-average risk. Hence 𝑝�𝑡+1 ≥ 𝑝�𝑡  and thus 

𝑝𝑡+1∗ > 𝑝𝑡∗. 

For any 𝛼 > 0 and under the condition of 𝑝𝑡∗ < 𝑝�𝑡 ≤ �̅�, there exist 𝑝∗ ∈ [𝑝, �̅�] and 𝑝� ∈ [𝑝, �̅�] such that 

limt→∞ 𝑝𝑡∗ = 𝑝∗ and limt→∞ 𝑝�𝑡 = 𝑝�. 𝑝∗ and 𝑝� are determined by the formulas: 𝑝� = ∫ 𝑝𝑓(𝑝)
1−𝐹( 𝑝∗)

𝑑𝑝�̅�
 𝑝∗  and 

𝑝∗ = 𝑝� − 𝐶0
𝐿

. Thus, 𝑝� does not necessarily equal to �̅�. Intuitively, the risk type p exits the unknown 

market when 𝑝 <  𝑝𝑡∗ = 𝑝� − 𝐶0
𝐿

, thus there will be some highest risk types 𝑝 ∈ [𝑝∗, �̅�] fish around over 

time in the unknown market, looking for new conventional firms to insure with. 

Definition: Quasi-equilibrium in the Infinite Horizon Myopic Market if 𝒒𝒕
𝒄,𝑳(𝒑) = 𝒑𝑳 + 𝑪𝟎 

In each period t (t= 1, 2, … ), the quasi-equilibrium is a set of prices 𝑞𝜏,𝑛(𝑝), 𝑞𝜏,𝑖(𝑝), 𝑞𝑡
𝑐,𝐿(𝑝), 𝑞𝑡

𝑐,𝑈, 

and a cutoff  𝑝𝑡∗ = max �𝑝�𝑡 −
𝐶0
𝐿

,𝑝� such that: 

(i) Tech firm competition: 𝑞𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0, 𝑞𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶1. 

(ii) Conventional firm quasi-competition: 𝑞𝑐,𝐿(𝑝) = 𝑝𝐿 + 𝐶0  and 𝑞𝑡
𝑐,𝑈 = 𝑝�𝑡𝐿,  with 𝑝�𝑡 =

𝐸[𝑝�𝑐𝑜𝑛𝑣𝑡−1𝑈 ]. 

(iii) Individual quasi-optimization:  

a. In period 0, individuals with 𝑝 < 𝑝�0∗ purchase from tech firms 𝑝 ≥ 𝑝�0∗ purchase from 

conventional firms.  

b. In period 𝑡, individuals who purchased from a tech firm in 𝑡 − 1 continue to purchase 

from tech firms; individuals who purchased from a conventional firm who knew their 

type continue to purchase from that firm. 

For individuals with  𝑝𝑡−1∗ < 𝑝 <  𝑝𝑡∗ who purchased in the “unknown type” market in 

𝑡 − 1, a fraction 𝛼 individuals who had their type learned continue to purchase from 

their current firm, and the fraction 1 − 𝛼 of such individuals who did not have their 

type learned purchase from a tech firm. For individuals with ≥  𝑝𝑡∗ , they stay in the 

“unknown type” market. 

c. When  𝑡 → ∞,  𝑝� → ∫ 𝑝𝑓(𝑝)
1−𝐹( 𝑝∗)

𝑑𝑝�̅�
 𝑝∗ , and 𝑝∗ → 𝑝� − 𝐶0

𝐿
. Individuals with 𝑝 < 𝑝∗  were 

either learned and continue to insure with the incumbent conventional firms or insure 

with the tech firms. Some highest risk types with 𝑝 ∈ [𝑝∗, �̅�]  fish around in the 

unknown market, looking for new conventional firms to insure with. 
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The quasi-equilibrium depends on the exogenous cost parameters 𝐶0 and the speed of conventional 

insurer learning 𝛼. Note that 𝑝𝑡∗ and 𝑝�𝑡 do not depend on α: 𝑝�0∗ ≡ ∫ 𝑝𝑓(𝑝)𝑑𝑝�̅�
𝑝  is independent of α, and, 

inductively, if  𝑝𝑡−1∗  and 𝑝�𝑡−1  do not depend on α , then 𝑝�𝑡 = 𝐸(𝑝|𝑝 ∈ [𝑝�𝑡−1∗ , �̅�])  and  𝑝𝑡∗ =

max �𝑝�𝑡 −
𝐶0
𝐿

,𝑝� are also independent of α. 

We also see that 𝑝𝑡∗ is decreasing with 𝐶0 for 𝑡 > 0. Inductively: 𝑝�0∗ ≡ ∫ 𝑝𝑓(𝑝)𝑑𝑝�̅�
𝑝  is independent of 

𝐶0; thus, we have 𝑝�1 = 𝐸(𝑝|𝑝 ∈ [𝑝�0∗, �̅�]), and thus 𝑝1∗ = max �𝐸(𝑝|𝑝 ∈ [𝑝�0∗, �̅�]) − 𝐶0
𝐿

,𝑝� is decreasing 

with 𝐶0 ; when 𝑝𝑡−1∗  is decreasing with 𝐶0 , with 𝑝�𝑡 = 𝐸(𝑝|𝑝 ∈ [𝑝�𝑡−1∗ , �̅�]) ,  𝑝𝑡∗ = max �𝐸(𝑝|𝑝 ∈

[𝑝𝑡−1∗, 𝑝])−𝐶0𝐿,𝑝 is decreasing with 𝐶0. 

For any period t (t= 1, 2,…), the share of tech firms equals to F �𝑝�0∗ −
𝐶0
𝐿
� + (1 − α) �F �𝑝�𝑡 −

𝐶0
𝐿
� −

F �𝑝�0∗ −
𝐶0
𝐿
�� = αF �𝑝�0∗ −

𝐶0
𝐿
� + (1 − α)F �𝑝�𝑡 −

𝐶0
𝐿
�. It is easy to see the share of tech firms decreases 

with α and 𝐶0. When 𝑡 → ∞, the market share of tech market is F �𝑝�0∗ −
𝐶0
𝐿
� + (1 − α) �F �𝑝� − 𝐶0

𝐿
� −

F �𝑝�0∗ −
𝐶0
𝐿
�� = αF �𝑝�0∗ −

𝐶0
𝐿
� + (1 − α)F �𝑝� − 𝐶0

𝐿
�. It is easy to see the market share of tech market is 

decreasing with α and 𝐶0. 

Proposition Myopic assuming naïve pricing i.e. 𝒒𝒕
𝒄,𝑳(𝒑) = 𝒑𝑳 + 𝑪𝟎: 

In each period t, tech market share is decreasing in 𝛼 and 𝐶0 (and independent of 𝐶1). The results are 

thus consistent with those from the FH model. 

3.3.2 Savvy Pricing Environment 

As a second case, we consider a savvy pricing rule: conventional firms who have learned a customer’s 

type set 𝑞𝑡
𝑐,𝐿(𝑝) = min{𝑝𝐿 + 𝐶0,𝑞𝑡

𝑐,𝑢} for all customers with 𝑝 < 𝑝�𝑡, and any price at or above 𝑞𝑡
𝑐,𝑢 

otherwise (so that they offload the higher risks who cannot be attracted at any profitable price).12 

Individuals face different pricing but the same basic choices as in the Naïve pricing environment and 

again myopically choose the best price. It is useful to define the terms  𝑝�𝑡 and 𝑝𝑡∗ exactly as in the 

Naïve model. Here:   

• The fraction (1 − 𝛼) whose insurers did not learn their type will leave for a tech firm if 

𝑞𝑡
𝜏,𝑛(𝑝) < 𝑞𝑡

𝑐,𝑈, i.e., 𝑝 < 𝑝�𝑡 −
𝐶0
𝐿

. Otherwise, they will continue to participate in the “unknown” 

conventional market. 

12 It is easy to show that all of the key results in this section will be the same if instead the incumbent 
conventional firms offer the acturially fair premium to the learned types, i.e. 𝑞𝑡

𝑐,𝐿(𝑝) = 𝑝𝐿 . The proof is 
available from the authors upon request. 
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• The fraction 𝛼 whose insurers learned their type will leave the “unknown” market and stay 

with their incumbent firm if 𝑝 < 𝑝�𝑡 . Types with 𝑝 ≥ 𝑝�𝑡  will continue to participate in the 

“unknown” conventional market (by randomly choosing a new firm that does not know their 

type). 

Both 𝑝�𝑡 and 𝑝𝑡∗ = max �𝑝�𝑡 −
𝐶0
𝐿

, 𝑝� play important cutoff roles here. First, the fraction 𝛼 of all learned 

types below 𝑝�𝑡 leave the unknown conventional market for a “learned” contract. Second, all unlearned 

types below 𝑝𝑡∗ exit the unknown conventional market for a tech firm. . Following the same logic as in 

Section 3.3.1, it is straightforward to see that {𝑝𝑡∗} and {𝑝�𝑡} are non-decreasing in 𝑡 and lim𝑡→∞ 𝑝�𝑡 = �̅� 

for any 𝛼 > 0. 

Definition: Quasi-equilibrium in the Infinite Horizon Myopic Market with Savvy Firms  

In each period t (t= 1, 2, … ), the quasi-equilibrium is a set of prices 𝑞𝜏,𝑛(𝑝), 𝑞𝜏,𝑖(𝑝), 𝑞𝑡
𝑐,𝐿(𝑝), 𝑞𝑡

𝑐,𝑈, 

and a set of cutoffs 𝑝�𝑡  and  𝑝𝑡∗ = max �𝑝�𝑡 −
𝐶0
𝐿

,𝑝� such that: 

(i) Tech firm competition: 𝑞𝜏,𝑛(𝑝) = 𝑝𝐿 + 𝐶0, 𝑞𝜏,𝑖(𝑝) = 𝑝𝐿 + 𝐶1. 

(ii) Conventional firm quasi-competition: 𝑞𝑐,𝐿(𝑝) = 𝑝𝐿  and 𝑞𝑡
𝑐,𝑈 = 𝑝�𝑡𝐿,  with 𝑝�𝑡 =

𝐸[𝑝�𝑐𝑜𝑛𝑣𝑡−1𝑈 ]. 

(iii) Individual quasi-optimization:  

a. In period 0, individuals with 𝑝 < 𝑝�0∗  purchase from tech firms and with 𝑝 ≥ 𝑝�0∗ 

purchase from conventional firms.  

b. In period 𝑡, individuals who purchased from a tech firm in 𝑡 − 1 continue to purchase 

from tech firms; individuals who purchased from a conventional firm who knew their 

type continue to purchase from that conventional firm. 

For individuals who purchased in the “unknown type” market in 𝑡 − 1, a fraction 𝛼 

individuals who had their type learned continue to purchase from their current firm if 

𝑝 < 𝑝�𝑡  and otherwise buy in the “unknown type” market (from another random 

conventional firm), and the fraction 1 − 𝛼 of such individuals who did not have their 

type learned purchase from a tech firm if 𝑝 < 𝑝𝑡∗ and otherwise stay in the “unknown 

type” market. 

c. When  𝑡 → ∞, 𝑝�𝑡 → �̅�, and  𝑝𝑡∗ → �̅� − 𝐶0
𝐿

. All risks were either learned and continue to 

insure with the incumbent conventional firms or insure with the tech firms. The 

unknown type market diminishes. 

In this setup, the comparative statics of the share of individuals insuring with a tech firm may not be 

monotone in 𝛼. On the one hand, a higher 𝛼 increases learning and means that more low risk types 

have their types learned early and thus stay with conventional firms forever. Thus, larger 𝛼 would 

seem to imply lower tech shares. But there is an offsetting effect: it exacerbates adverse selection 
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within the conventional unlearned market, as a higher 𝛼 means that additional, low-risk individuals 

who would have stayed in the “unlearned type” market now exit for the learned type conventional 

market. Their exit raises the average riskiness of the “unlearned type” pool, implying a higher  𝑝𝑡∗  and 

hence more types who leave for tech firms in the subsequent period. To put it another way: all else 

equal, a higher 𝛼 implies more “unraveling” towards the learned conventional market instead of the 

tech market; but it also implies faster unraveling. 

 
Figure 1: Temporal evolution of the tech firm market share. Assumes uniform distribution of 𝑝 on [0.3, 
0.9], 𝐶0 = 0.28𝐿.  

 

Figure 1 illustrates the potential for non-monotone comparative statics with respect to 𝛼. The tech 

shares for four different levels of 𝛼 “cross” each other—and hence switch order—over time. In period 

𝑡 = 8, for example, the tech share increases from 𝛼 = 0.05 to 𝛼 = 0.15 but then decreases when 𝛼 is 

further increased to 0.25 and 0. 35. 
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Figure 2: Temporal evolution of the tech firm market share. Assumes uniform distribution of 𝑝 on [0.3, 
0.9], 𝛼 = 0.25.  

A higher 𝐶0 implies, for any given distribution of types in the “unlearned type” market, a smaller share 

of individuals leaving for tech firms in the current period. On the other hand, it also implies slower 

unraveling of the market. Intuitively, this slower unraveling should give individuals in the “unlearned 

types” market more opportunities to be learned before the price is driven up to the point where they 

will exit to a tech firm—and hence should also lead to a smaller tech share. profit is straightforward to 

confirm the intuition that the tech market share is decreasing in 𝐶0 for periods 0 and 1, and our 

simulations to date have all indicated this same pattern for all periods (see, e.g., the example in Figure 

2). But we do not yet have a formal proof and, indeed, suspect there may be pathological examples 

with highly non-uniform distributions of types for which we can generate non-monotonicities. 

“Proposition” Myopic if 𝒒𝒕
𝒄,𝑳(𝒑) = 𝐦𝐢𝐧{𝒑𝑳 + 𝑪𝟎,𝒒𝒕

𝒄,𝑼}: 

The period 𝑡 tech market share may be increasing or decreasing in 𝛼. The tech market share can be 

decreasing in 𝐶0. Whether the tech market share can be increasing in 𝐶0 is unknown. The tech market 

share is independent of 𝐶1. 
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4. Conclusions 

𝑇𝑎𝑏𝑙𝑒 1 summarizes our main results, 𝑖. 𝑒. the (quasi)-equilibrium predictions of the three models. 

Table 1 Main Results 

 
Model structure 

 
Questions 

 Finite horizon model 
with foresight 

 Infinite horizon OLG 
model 

Infinite horizon 
myopic model 

1 
How do risk types 
distribute between tech and 
conventional firms? 

 There is a period 1 
cutoff type 𝑝1∗. Types 
𝑝 < 𝑝1∗ buy from tech 
insurers. 
There is a a period 2 
cutoff type 𝑝1∗ ≥ 𝑝0∗ . 
Individuals with 
𝑝 < 𝑝1∗ switch to tech 
insurers.  

 

There is a cutoff type 
�̂�∗ . All individuals 
with p < �̂�∗  purchase 
from tech insurers. 

In each period, there is 
a cutoff 𝑝𝑡∗ for current 
buyers in the 
conventional market 
with unlearned types. 
Types with 𝑝 < 𝑝𝑡∗ 
buy from tech firms 
unless their type is 
learned by their 
insurer. 

2 

How does the market share 
of tech insurer correlate 
with the learning speed of 
conventional insurers? 

 𝑝1∗  is decreasing and 
𝑝2∗  is non-increasing 
with the speed of 
learning. Hence, the 
tech market share is 
weakly decreasing 
with the speed of 
learning. 

 

�̂�∗(and hence the tech 
market share) is 
increasing with the 
speed of learning. 

Tech market share is 
decreasing with the 
speed of learning 
under a naïve pricing 
environment. It is, 
however, ambiguous 
under a savvy pricing 
environment. 

3 

How does the market share 
of tech insurers correlate 
with the additional cost of 
digital technology? 

 𝑝1∗ and 𝑝2∗  (and hence 
the tech market 
share) are decreasing 
in the cost of 
technology. 

 �̂�∗(and hence the tech 
market share) is 
decreasing with the 
cost of technology. 

Tech market share is 
decreasing in the cost 
of technology. 

       
Notes: For details see Propostions FH, OLG, and Myopic 
 
All three models feature a “cutoff” structure, where low risk types buy from tech firms while higher 

risks buy from conventional firm. This cutoff structure reflects a basic tradeoff at the heart of all 

models: on the one hand, tech firms have an informational advantage; on the other hand, they bear a 

higher cost of operation, which they pass on to customers. In general, this tradeoff allows both types of 

firm to coexist. 

In light of this tradeoff, one might be inclined to conjecture that anything which tilts this tradeoff more 

in favor of conventional firms or against tech firms will lead to a smaller tech market share. This is 

indeed the case for the costs: across all our market models, a higher cost disadvantage leads to a lower 

tech market share (with the possible exception of the myopic model with savvy firms, where the 

question remains open). 

Interestingly, however, the effect of shrinking the informational disadvantage between tech and 

conventional firms—i.e., increasing the speed 𝛼 at which conventional firms learn—does not always 

lead to falling tech market shares. Whether it does or does not depends on the setting. In the FH model, 

a higher 𝛼 does, as expected, always lead to a smaller tech share. The same is true in the myopic 

model with naïve pricing. In the OLG setting, however, shrinking the informational disadvantage leads 
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to a larger tech share. And, in the myopic model with savvy investors, the effect is ambiguous, and 

examples can be shown where the effects go in either direction. 

Though perhaps ex-ante unexpected, there is some clear economic intuition for the differences across 

settings. In general, there are economic forces pushing in both directions. On the one hand, faster 

learning by conventional firms does indeed reduce the informational advantage of tech firms. This 

tends to lower the tech market share. On the other hand, faster learning also increases the 

informational advantage of incumbent conventional firms over other conventional firms, exacerbating 

adverse selection among conventional firms. Worse adverse selection in the conventional market 

redounds to the benefit of tech firms, who do not suffer from it. 

In the FH model and the naïve myopic model, the latter channel is shut down entirely. In the FH 

model, it is shut down because we assume that there is an active market for unknown types only once, 

in period 0, when there are no incumbent firms with informational advantages. In the naïve myopic 

model, because incumbent conventional firms who have learned their customer’s type price exactly as 

tech firms would, the rate at which the conventional market for unlearned types unravels (via adverse 

selection as low risks leave the pool) is independent of 𝛼. A change in 𝛼 does not exacerbate adverse 

selection.  

In the savvy myopic model, on the other hand, a higher 𝛼  does exacerbate adverse selection, as 

incumbent firms use their informational advantage to retain some additional types who are relatively 

low risk but who would not have left the market for tech firms (because of the cost disadvantage). The 

non-monotonic behavior of the tech market share in Figure 1 shows that this adverse selection channel 

can potentially overwhelm the “faster learning reduces tech firms’ informational advantage” channel. 

Finally, the OLG model effectively shuts down the “faster learning reduces tech firms’ informational 

advantage” channel. The equilibrium is stationary, and consumers always have the choice of a tech 

firm or the “unlearned” market—and always at the same price. So, for any customer who original 

chose a conventional firm, the relevant “outside option” is always an “unlearned” market contract. As 

such, informed firms are (effectively) not competing with tech firms at all—their greater knowledge 

therefore only exacerbates adverse selection within the conventional market, and the tech share 

increases.  

Our modeling frameworks are perhaps best seen a capturing costly—but optional—risk classification 

technologies. Since our framework is about unknown-type informational issues, they are less well 

suited to modeling unknown action contexts. Some telematics technologies (in-car, in home, or 

wearable health-monitoring devices e.g.) are at least in part about monitoring behavior in order to 

reduce moral hazard; our approach is less well-adapted to such settings – although we believe similar 

techniques can be used and some parallel insights are likely to appear in the presence of moral hazard 

effects. 
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There are several other directions in which we believe our analysis can be fruitfully extended. In this 

paper we focus exclusively on the trade-off between the costs of new technologies and the 

informational advantages thereof. We neglect other potentially important tradeoffs, such as the 

tradeoff between subjective transparency costs and informational advantages studied in Gemmo et al., 

(2017). We view the incorporation of moral hazard considerations, transparency aversion, and other 

complications as important directions for further study.  
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Appendix 

Proof of proposition FH 

We consider two distinct cases: case 1: 𝑝0 = �̂�(𝑞0𝑐) and case 2: 𝑝0 = 𝑝 > �̂�(𝑞0𝑐).  

Case 2: in this case, conventional firms sell to everybody in period 0, 𝑝0 = 𝑝, and, along a smooth 

family of equilibrium, this cutoff will be locally independent of small changes in 𝛼, 𝐶0, and 𝐶1. For 

local changes in 𝛼, 𝐶0 and 𝐶1, the period 1 cutoff 𝑝1 solves: 

max
𝑝†∈[𝑝,𝑝]

� �𝑝†𝐿 − 𝐶0 − 𝑝𝐿 �𝑓(𝑝)𝑑𝑝 
𝑝

𝑝†
≡ max

𝑝†∈�𝑝,𝑝�
𝜋1�𝐶0,𝑝†�. 

Since 𝜋1 is independent of 𝛼 and 𝐶1, so is 𝑝1. We compute  𝜕2𝜋1

𝜕𝐶0𝜕𝑝†
= 𝑓�𝑝†�, which is strictly positive 

(as, otherwise, 𝜕𝜋
1

𝜕𝑝†
> 0  and 𝑝†  would not be optimal). By Topkis’s Theorem, the cutoff 𝑝1  is 

increasing in 𝐶0, strictly so if 𝑝1 > 𝑝.    

Case 1: For any given 𝑞0𝑐, it is straightforward to see that raising 𝐶0, 𝐶1, or 𝛼 raises profits. So 𝑞0𝑐 mut 

fall in response by the stability requirement in part (iv) of the definition of an FH equilibrium. Since it 

is easy to see that a rise in  �̂� (together with a rise in 𝐶0  or 𝐶1) would imply an increase in 𝑞0𝑐. So  �̂� 

must fall.    

 

The period 1 cutoff satisfies:  

max
𝑝†∈[𝑝0(𝛼,𝐶0,𝐶1),𝑝]

� �𝑝†𝐿 − 𝐶0 − 𝑝𝐿 �𝑓(𝑝)𝑑𝑝 
𝑝

𝑝†
≡ max

𝑝†∈[𝑝0(𝛼,𝐶0,𝐶1),𝑝]
𝜋1�𝐶0,𝑝†�. 

An increase in 𝛼 or 𝐶1 only affects this problem by lowering the lower bound 𝑝0(𝛼,𝐶0,𝐶1). Hence, 𝑝1 

is weakly decreasing in  𝛼  and 𝐶1.  By the same argument as in case 2, the 𝑝†  solving 

max
𝑝†∈[𝑝∗,𝑝]

𝜋1�𝐶0,𝑝†� for any fixed 𝑝∗ is decreasing in 𝐶0, and strictly so unless the optimum is at 𝑝∗. 

Together with the fact that the lower bound 𝑝0(𝛼,𝐶0,𝐶1) is strictly decreasing in 𝐶0 implies that 𝑝1 is 

decreasing in 𝐶0, and strictly so unless 𝑝1 = 𝑝0.  
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Proof of proposition OLG 

First, observe that 

𝑉(𝑞𝑐 , �̂�∗;𝐶0,𝐶1) =  
1

1 − 𝛽𝜂
𝑈(𝑊 − 𝑞𝑐) − �𝑈�𝑊 − 𝑞𝜏,𝑛(�̂�∗)�+

𝛽𝜂
1 − 𝛽𝜂

 𝑈 �𝑊 − 𝑞𝜏,𝑖(�̂�∗)��

=
1

1 − 𝛽𝜂
𝑈(𝑊 − 𝑞𝑐)− [𝑈(𝑊 − �̂�∗𝐿 − 𝐶0) +

𝛽𝜂
1 − 𝛽𝜂

𝑈(𝑊 − �̂�∗𝐿 − 𝐶1) 

is strictly increasing in 𝐶0  and 𝐶1  and strictly decreasing in �̂�. Thus, for any given 𝑞𝑐 , 

the  �̂�∗(𝑞𝑐;𝐶0,𝐶1)  satisfying 𝑉(𝑞𝑐 , �̂�∗;𝐶0,𝐶1) = 0  is strictly decreasing in  𝐶0  and 𝐶1 

unless  �̂�∗(𝑞𝑐;𝐶0,𝐶1) = 𝑝. Given any 𝑞𝑐, �̂�∗(𝑞𝑐;𝐶0,𝐶1) is obviously independent of 𝛼.  

Denoting by 𝔼𝜋𝑀 ≡ 𝔼�𝑞𝑐 − 𝐿𝑝|𝑝 ∈ [�̂�(𝑞𝑐),𝑝�(𝑞𝑐)]� and 𝔼𝜋𝐻 ≡ 𝔼�𝑞𝑐 − 𝐿𝑝|𝑝 ∈ [𝑝�(𝑞𝑐),𝑝]�, lifetime 

per-sale firm profits in the “unlearned pool” can be written, using the definition of 𝑄𝑀(𝑞𝑐) as:  

𝜋𝑐(𝑞𝑐) = 𝑄𝑀(𝑞𝑐) �1 +
𝛼𝜂𝛽

1 − 𝜂𝛽
�𝔼𝜋𝑀 + �1 − 𝑄𝑀(𝑞𝑐)�𝔼𝜋𝐻

= 𝑄𝑀(𝑞𝑐) �
1 − 𝜂 + 𝛼𝜂

1 − 𝜂
�
�1 − 𝜂𝛽 + 𝛼𝜂𝛽

1 − 𝜂𝛽 �

�1 − 𝜂 + 𝛼𝜂
1 − 𝜂 �

𝔼𝜋𝑀 + �1 −𝑄𝑀(𝑞𝑐)�𝔼𝜋𝐻

= �1 − 𝑄𝑀(𝑞𝑐)�
1 − 𝐹��̂�(𝑞𝑐)�
1 − 𝐹�𝑝�(𝑞𝑐)�

                           

× �
�𝐹�𝑝�(𝑞𝑐)� − 𝐹��̂�(𝑞𝑐)��

1 − 𝐹��̂�(𝑞𝑐)�

�1 − 𝜂𝛽 + 𝛼𝜂𝛽
1 − 𝜂𝛽 �

�1 − 𝜂 + 𝛼𝜂
1 − 𝜂 �

𝔼𝜋𝑀 +
1 − 𝐹�𝑝�(𝑞𝑐)�
1 − 𝐹��̂�(𝑞𝑐)�

𝔼𝜋𝐻�. 

Hence, 𝜋𝑐(𝑞𝑐)  is independent of 𝐶0  and 𝐶1  for any given 𝑞𝑐  except through the effect on 

�̂�∗(𝑞𝑐;𝐶0,𝐶1), and it is easy to see that 𝜋𝑐(𝑞𝑐) is strictly decreasing in �̂�∗(𝑞𝑐;𝐶0,𝐶1). Together with 

the preceding paragraph, this implies  

Observation 1: 𝜋𝑐(𝑞𝑐) is increasing in 𝐶0 and 𝐶1, strictly so unless �̂�∗(𝑞𝑐;𝐶0,𝐶1) = 𝑝. 

Finally, observe that the expression:  

�1 − 𝜂𝛽 + 𝛼𝜂𝛽
1 − 𝜂𝛽 �

�1 − 𝜂 + 𝛼𝜂
1 − 𝜂 �

 

is strictly decreasing in 𝛼 (except in the limit as 𝛽 → 1, in which case it is independent of 𝛼. It follows 

that (starting from an equilibrium where profits are zero), 𝜋𝑐(𝑞𝑐) is strictly decreasing in 𝛼 as long as 

𝑝�(𝑞𝑐) > �̂�(𝑞𝑐) . And 𝑝�(𝑞𝑐) > �̂�(𝑞𝑐)  obviously holds in equilibrium if 𝛼 > 0 : if 𝑝�(𝑞𝑐) = �̂�(𝑞𝑐), 

conventional firms never retain any customers, which means that they must break even on the average 

risk type above �̂�(𝑞𝑐). But then would be strictly profitable to sell to learned types with type �̂�(𝑞𝑐). 

This yields:  

Observation 2: For any 𝑞𝑐,  𝜋𝑐(𝑞𝑐) is decreasing in 𝛼, strictly so if 𝛽 < 1.  
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Observations 1 and 2, together with the fact that 𝜋𝑐(𝑞𝑐) = 0  and 𝑑𝜋
𝑐(𝑞𝑐)
𝑑𝑞𝑐

 is increasing in any 

equilibrium, implies that the equilibrium 𝑞𝑐 is increasing in 𝐶0 and 𝐶1 (strictly so if 𝑝 ≠ �̂�∗(𝑞𝑐)) and 

decreasing in 𝛼 (strictly so if 𝛽 < 1).  

Observing that �̂�∗(𝑞𝑐) is decreasing in 𝑞𝑐 (strictly so if 𝑝 ≠ �̂�∗(𝑞𝑐)) completes the proof.  

It is worth commenting briefly on the intuition behind the 𝛼  result. The expression for 𝜋𝑐  above 

implies that 𝜋𝑐 = 0 if and only if 

�
�𝐹�𝑝�(𝑞𝑐)� − 𝐹��̂�(𝑞𝑐)��

1 − 𝐹��̂�(𝑞𝑐)�

�1 − 𝜂𝛽 + 𝛼𝜂𝛽
1 − 𝜂𝛽 �

�1 − 𝜂 + 𝛼𝜂
1 − 𝜂 �

𝔼𝜋𝑀 +
1 − 𝐹�𝑝�(𝑞𝑐)�
1 − 𝐹��̂�(𝑞𝑐)�

𝔼𝜋𝐻� = 0. 

When 𝛽 = 1, this is a weighted average of the profits from “retained” types and “non-retained” types, 

where the weights are the population shares of these types. To see why, note that all types above 

�̂�(𝑞𝑐) are buying from conventional firms at all times. When there is no time discounting, the cross-

sectional profits per period must be zero. Time discounting does not (directly) the distribution of types 

over time—it still matches the cross sectional distribution. But from an individual firm’s point of view 

a sale loses money immediately, and will make that profit up later if they learn that they had sold to a 

lower risk type. With time discounting, though, being later in time is less valuable. So if the cross 

sectional profits were zero, then the per-firm discounted profits from a sale would be negative. Prices 

must therefore be higher to break even when there is discounting. Moreover, the faster is the learning, 

the more back-loaded is the profit stream, and the higher the prices have to be. This is manifesting 

itself in the preceding formula in the term 

�1 − 𝜂𝛽 + 𝛼𝜂𝛽
1 − 𝜂𝛽 �

�1 − 𝜂 + 𝛼𝜂
1 − 𝜂 �

, 

The numerator of which is, effectively, the present discounted “number of periods” of sales to 

profitable learned types. The denominator is the undiscounted “number of periods”. The gap between 

these two grows with 𝛼.  
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